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We analyze the modulational instability of the zone boundary mode �ZBM� and the band edge modes
�BEMs� in a one-dimensional nonlinear diatomic lattice and obtain rigorous results. Some numerical calcula-
tions of modulational instability in these modes are presented. These results indicate that the modulational
instability of the BEMs leads to excitation of the discrete breathers �DBs� in the band gap, while that of the
ZBM leads to excitation of the DBs above the phonon band.
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I. INTRODUCTION

Nonlinear vibrations in lattice systems have been studied
for a long time. It is well known that nonlinear dynamics
gives rise to various phenomena such as instability, pattern
formation, and localization. These phenomena play impor-
tant roles in vibration problems encountered in lattice sys-
tems.

One of the pioneering studies of nonlinear vibrations was
carried out by Fermi, Pasta, and Ulam �1�, in which they
studied the energy relaxation in a one-dimensional anhar-
monic lattice called after them the Fermi-Pasta-Ulam �FPU�
system. They have investigated the energy transfer between
normal modes due to the nonlinearity of the system. Their
purpose was to show that the nonlinearity of the system leads
to thermal equilibrium by energy transfer between the nor-
mal modes. However, they could not obtain the expected
result. Instead, they found energy recurrence between a few
normal modes in the FPU system. Their focus was mainly on
phenomena that can be connected to the continuum limit.
They also focused on the behavior of normal modes having
considerably longer wavelengths as compared to the lattice
spacing.

Recently, vibration phenomena with short wavelengths
have also been studied extensively. Takeno and co-workers
reported a time-periodic and space-localized structure called
a discrete breather �DB� or intrinsic localized mode �ILM�
�2,3�. The DB lies outside the linear dispersion band. In the
FPU lattice, the dispersion band has a single upper bound
�max. Therefore, the internal frequency �DB of a DB is al-
ways higher than �max.

DBs exhibit interesting dynamics. One of the important
aspects of the dynamics of DBs is their excitation process. It
is known that DBs or DB-like structures called chaotic
breathers �CBs� �4–7� are excited by the modulational insta-
bility of the zone boundary mode �ZBM� in lattice systems.
In lattice systems, the zone boundary is above the upper

boundary of the dispersion band. Thus, modulational insta-
bility is an important mechanism for the excitation of DBs in
lattice systems. In fact, a direct relation between the modu-
lational instability of the ZBM and the existence of DBs has
been discussed in �8�.

A lot of studies have been carried out on the modulational
instability in various systems such as FPU systems �9–13�
and nonlinear Klein-Gordon systems �14,15�. However, there
are no rigorous results on the analysis of the modulational
instability in anharmonic lattices, except for a study of the
monoatomic FPU lattice by one of the authors �13�.

In the present study, we focus on the diatomic FPU lattice.
A diatomic lattice, which is a generalization of a mono-
atomic system, consists of two types of particles. Hence, the
dispersion curve of a diatomic lattice has two branches: an
acoustic branch and an optical branch. A gap exists between
these two branches. DBs can exist in this gap �16–20�. Thus,
the modulational instability of the band edge modes �BEMs�
is an important mechanism for the excitation of DBs in the
gap. However, the stability of the ZBM and BEMs in di-
atomic lattices has not been analyzed. The main objective of
the present study is to obtain rigorous results from the sta-
bility analysis of the ZBM and the BEMs in a one-
dimensional diatomic lattice.

This paper is organized as follows. In Sec. II, we describe
the method of the stability analysis of the periodic solution
of a homogeneous potential system carried out by using the
Gauss hypergeometric differential equation. In Sec. III, the
ZBM and the BEMs in diatomic lattice systems are derived:
in these systems, the zone boundary and band edge are lo-
cated just on the edge of the acoustic and optical branches,
respectively. In Sec. IV, we present the rigorous results ob-
tained from the stability analysis of the ZBM and the BEMs.
Some numerical calculations of the modulational instability
of these modes are also shown. Conclusions are presented in
Sec. V.

II. STABILITY ANALYSIS OF PERIODIC SOLUTIONS

Consider the linear differential equation*doi@ams.eng.osaka-u.ac.jp
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d2x

dt2 + f�t�x = 0, �1�

where f�t� is a periodic function with period T.
Let �x1�t� ,x2�t�� be the fundamental solution of �1�. A

monodromy matrix M is defined as the mapping from the
solution of �1� at t to the solution of �1� at t+T:

�x1�t + T�
x2�t + T�

� = M�x1�t�
x2�t�

� . �2�

Since �1� is the equation of motion of a Hamiltonian system,
the eigenvalues of M are given by �� ,�−1�. Hereafter, we
assume 	� 	 � 	�−1	. These eigenvalues are also called charac-
teristic multipliers. The characteristic exponent � is defined
as �= �T−1 ln 	�	. The solution �x1�t� ,x2�t�� is unstable when
� is positive.

Next, we consider the stability of the periodic solution of
the equation of a homogeneous potential system of even or-
der given as

d2�

dt2 + �2p�2p−1 = 0 �3�

and

d2	

dt2 + 
2p�2p−2	 = 0, �4�

where p�Z is positive. Equation �4� is a particular case of
�1�. Here, we define the stability parameter �2p as

�2p =

2p

�2p
. �5�

Next, we consider the period T of the solution �. Integrat-
ing �3�, we obtain

1

2
�d�

dt
�2

+
�2p

2p
�2p = h , �6�

where h is a positive constant. The function ��t� is the in-
verse function of the integral



t0

t

dt = 

�0

� dw
���w�

, �7�

where

��w� = 2h −
�2p

p
w2p. �8�

If we consider the right-hand side �RHS� of �7� as the inte-
gral in a complex domain, there exist branch points sn�C on
a Riemann surface defined by z=���w�:

sn = �2ph

�2p
�1/2p

ein/p �n = 0,1,2, . . . ,2p − 1� . �9�

Equation �7� gives the period of ��t� when it is integrated
along a closed path. Taking � as the closed path that involves
only two branch points on the real axis, s0= �2ph /�2p�1/2p

�R and sp=−�2ph /�2p�1/2p�R, we can obtain the real pe-
riod T of � as

T = �
�

dw

�2h −
�2p

p
w2p

. �10�

It is well known that �4� can be transformed into the
Gauss hypergeometric differential equation by the variable
transformation z= �

�2p

2ph ����t��2p �21�, as follows �see Appen-
dix A for the derivation�:

z�1 − z�
d2	

dz2 + �c − �a + b + 1�z�
d	

dz
− ab	 = 0, �11�

where

a + b =
1

2
−

1

2p
, ab = −

�2p

4p
, c = 1 −

1

2p
. �12�

It is possible to obtain the explicit form M using �11�. Equa-
tion �11� has two singular points at z=0 and z=1. Let �0 and
�1 be the anticlockwise closed paths around z=0 and z=1,
respectively. The monodromy matrices M��0� and M��1�
are given by

M��0� = �1 e−2ib − e−2ic

0 e−2ic � , �13�

M��1� = � e−2i�c−a−b� 0

1 − e2i�c−a� 1
� , �14�

for a certain set of fundamental solutions �21�. The path � in
the w plane is mapped to �1�0

p�1�0
p in the z plane by the

variable transformation z= �
�2p

2ph �w2p. Thus, M��� is given by

M��� = M��0�pM��1�M��0�pM��1� . �15�

Substituting �13� and �14� into �15�, we obtain the explicit
form of M���:

M��� = �ABC − 1 BC

− A − 1
�2

, �16�

where

A = 1 − e2i�c−a�, �17�

B = 1 − e2i�c−b�, �18�

C =
2

1 − e2ic . �19�

Next, we study the properties of M���. The trace of M���
can be expressed as

trM��� =
4

sin2� 

2p
� cos2 

2p
��p − 1�2 + 4p�2p� − 2

� 2F2p��2p� . �20�

The determinant of M��� can also be obtained from �16�,
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	M���	 = 1. �21�

The eigenvalues ��2p ,�2p
−1� of M��� are given by the solu-

tions of the characteristic equation

�2 − trM���� + 1 = 0. �22�

From �20� and �22�, we obtain �2p ,�2p
−1

=F2p��2p����F2p��2p��2−1. Thus, � is given by

� = � T−1 ln	F2p��2p� � ��F2p��2p��2 − 1	 . �23�

Considering Eq. �23�, we find that there exists a positive �
when F2p��2p��1 �21�. This condition is satisfied if and only
if �2p is in the region S2p defined by

S2p = s2p�0� � s2p�1� � s2p�2� � ¯ , �24�

where

s2p�0� = �� � R	� � 0� , �25�

s2p�i� = �� � R	ai � � � bi� �i = 1,2, . . . � . �26�

The parameters ai and bi are defined as follows:

ai = i�i − 1�p + i , �27�

bi = i�i + 1�p − i . �28�

We also define the region s̄2p�i� for later discussions as

s̄2p�i� = �� � R	bi−1 � � � ai� . �29�

III. DIATOMIC LATTICE AND ITS ZBM AND BEMS

We consider a diatomic lattice system whose Hamiltonian
is written as

H =
1

2�
j=1

2N

mjq̇j
2 + �

j=1

2N

�
r=1

p
K2r

2r
�qj+1 − qj�2r, �30�

where K2r�R is a constant. We assume that K2r�0 and
mj �0. We can set K2=1 without loss of generality. The fol-
lowing periodic boundary conditions are considered:

q2N+1 = q1, �31�

q̇2N+1 = q̇1. �32�

The mass of each particle in the system, mj, is given as
follows:

m2j−1 = M ,

m2j = m �j = 1,2, . . . ,N� , �33�

where m�M. We can set M =1 without loss of generality.
The equations of the motion of the system given by �30�

are

q̈2j−1 + �
r=1

p

K2r��q2j−1 − q2j−2�2r−1 + �q2j−1 − q2j�2r−1� = 0,

�34�

mq̈2j + �
r=1

p

K2r��q2j − q2j−1�2r−1 + �q2j − q2j+1�2r−1� = 0.

�35�

When p=1, Eqs. �34� and �35� become linear equations. If
we consider the linear plane waves

q2j−1 = X1 cos��2j − 1����exp�i�t� , �36�

q2j = X2 cos�2j���exp�i�t� , �37�

we obtain the linear dispersion relation

�2��,branch� = �1 +
1

m
� ���1 +

1

m
�2

−
4

m
sin2 ��,

�38�

where � is a wave number and �� is a constant determined by
the boundary conditions �31� and �32�:

�� =
�

N
, � = 0,1,2, . . . ,N − 1. �39�

It is well known that the linear dispersion curve of a di-
atomic lattice system has two branches, as shown in Fig. 1.
The signs � and � in �38� indicate the optical band �high
frequency� and the acoustic band �low frequency� in the lin-
ear dispersion relation, respectively. The zone boundary is
the upper bound of the optical band. The band edges are the
lower and upper bounds of the optical and acoustic bands,
respectively.

Here, we introduce a new variable k defined as

k = �� for the acoustic branch,

� + N for the optical branch.
� �40�

In the following discussions, we can use functions that de-
pend on k instead of those depending on � and the type of
branch. By using k, the ZBM corresponds to k=N. Further,
the two BEMs correspond to k=N /2 �acoustic� and k
=3N /2 �optical�.

By replacing � ��, branch� with ��k� in the linear disper-
sion relation, we obtain

0 π/2 π

ω

θκ

Acoustic band

Optical band

ZBM (k=N)

BEM (k=N/2)

BEM (k=3N/2)

FIG. 1. Dispersion curve of diatomic lattice systems. The two
black circles indicate the BEMs in acoustic and optical bands. The
white circle indicates the ZBM.
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�2�k� = ��1 +
1

m
� −��1 +

1

m
�2

−
4

m
sin2�k/N� for k = 0, . . . ,N − 1,

�1 +
1

m
� +��1 +

1

m
�2

−
4

m
sin2�k/N� for k = N, . . . ,2N − 1.� �41�

The angular frequencies of the ZBM and BEMs are given
as follows:

�2�N/2� = 2, �42�

�2�3N/2� = 2/m , �43�

�2�N� = 2�1 + 1/m� . �44�

It is found that the displacement of particles in the ZBM
and BEMs is uniform and nonzero. The normalized displace-
ment of the particles in these modes is given by

qj�t� = ujexp�i��k�t� , �45�

where

uj =�
q2j−1 = N−1/2�− 1� j ,

q2j = 0 for k = N/2,

q2j−1 = 0,

q2j = �Nm�−1/2�− 1� j for k = 3N/2,

q2j−1 = − m�Nm�1 + m��−1/2,

q2j = �Nm�1 + m��−1/2 for k = N .

�
�46�

Next, we consider the nonlinear equations of motion �34�
and �35�. Nonlinear equations of motion have solutions of
the form qj�t�=uj��t�. Substituting these solutions into �34�
and �35�, we obtain the equation for ��t� as follows:

d2�

dt2 + �
r=1

p

�2r�k��2r−1 = 0, �47�

where �2r�k� is a constant depending on k. The explicit ex-
pressions for the three modes are as follows:

�2r�N/2� = 2K2rN
−�r−1�, �48�

�2r�3N/2� = 2K2r�Nm�−�r−1�m−1, �49�

�2r�N� = 2K2rN
−�r−1��1 + m

m
�r

. �50�

Integrating �47�, we obtain

�d�

dt
�2

+ �
r=1

p
�2r

2r
�k��2r = h , �51�

where h is a positive constant which is in proportion to en-
ergy.

IV. STABILITY ANALYSIS

Let 	�t� be a small perturbation of the solution of �34� and
�35�. The variational equations of the system are given as
follows:

d2	2j−1

dt2 + �
r=1

p

�2r�k��2r−2�2	2j−1 − 	2j−2 − 	2j� = 0, �52�

m
d2	2j

dt2 + �
r=1

p

�2r�k��2r−2�2	2j − 	2j−1 − 	2j+1� = 0, �53�

where �2r�k� is a constant depending on k and is given by

�2r�N/2� = �2r − 1�K2rN
−�r−1�, �54�

�2r�3N/2� = �2r − 1�K2r�Nm�−�r−1�, �55�

�2r�N� = �2r − 1�K2rN
−�r−1��1 + m

m
�r−1

. �56�

We introduce the new variables x�, which denote small
perturbations in the normal-mode coordinate. The variable
transformations from 	 j to x� are given as follows:

	2j−1 =� 2

N
�
�=0

2N−1

U�x� sin��2j − 1��/N +


4
� , �57�

	2j =� 2

N
�
�=0

2N−1

V�x� sin�2j�/N +


4
� , �58�

where U� and V� are the amplitudes of the �th normal
modes and are given as

U� = 2 cos��/N� , �59�

V� = 2 − �2��� . �60�

Note that the wave numbers of the acoustic perturbations are
given as 0���N and those of the optical perturbations are
given as N���2N.

By the variable transformation of 	 j to x�, we obtain the
decoupled form of the variational equations

d2x�

dt2 + ��
r=1

p

�2r�k��2r−2��2���x� = 0 �0 � � � 2N� .

�61�

By changing the scale as �=h1/2p�̄ and t=h�1−p�/2pt̄, Eqs.
�47�, �51�, and �61� can be transformed into
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d2�̄

dt̄2
+ �

r=1

p

��2r�k�hr/p−1�̄2r−1� = 0, �62�

1

2
� d�̄

dt̄2�2

+ �
r=1

p ��2r

2r
hr/p−1�̄2r� = 1, �63�

d2x�

dt̄2
+ �

r=1

p

��2r�k�hr/p−1�̄2r−2��2���x� = 0. �64�

In the high-energy limit h→�, only the highest-order
term in the summation of �62�–�64� becomes dominant, since
hr/p−1→� in the case of r� p. Therefore, applying h→� to
�61�, we find that only the highest-order term becomes domi-
nant in the high-amplitude case. The monodromy matrix of
�61� converges to that of the homogeneous equations. Thus,
we can consider the equation

d2x�

dt2 + �2p�k��2p−2�2���x� = 0, �65�

with

d2�

dt2 + �2p�k��2p−1 = 0. �66�

We can obtain the explicit form of the monodromy matrix of
the variational equation �65� in the manner described in Sec.
II. The stability parameter �5� can be written as

�2p�k,�� =
�2p�k��2���

�2p�k�
. �67�

Next, we consider the characteristic multiplier 	�	�1 of
�61�. We can obtain �hom for the homogeneous equation �65�
as

�hom = F2p„�2p�k,��… + ��F2p„�2p�k,��…�2 − 1, �68�

where F2p��� is defined by �20�. The characteristic multiplier
� of inhomogeneous systems converges to �hom as h→�.
Thus, we can describe the relation between � and �hom as �
=�hom+��h�, where ��h� is a function of ��h�→0 as h→�.

The characteristic exponent � for �61� is given by
��k ,� ,h�=T−1�h�	�	. The period T�h� is given by

T�h� = �
��

dw
�P�w�

, �69�

P�w� = 2h − �
r=1

p
�2r�k�

r
w2r, �70�

where �� is an anticlockwise path involving two real branch
points of �P�w�. By introducing the variable transformation
w=h1/2pw�, T�h� can be rewritten as

T�h� = h−�1/2−1/2p��
��

dw�

�2 −
�2p�k�

p
w�2p

. �71�

The integrand of �71� is independent of h. Therefore, in the
high-energy limit, � is approximately given by

��k,�,h� � h1/2−1/2p. �72�

Considering � is given by �23�, it is found that � is a
monotonic increasing function in terms of F2p in the case of
unstable perturbations �F2p�1�. Thus, we can discuss the
magnitude of �(F2p��2p�) by comparing the magnitude of
F2p��2p�.

In order to compare the magnitude of F2p��2p� and
�(F2p��2p�), we take the first derivative of F2p��2p� and ob-
tain

�F2p

��2p
= −

2

sin2�/2�
1

��p − 1�2 + 4p�2p

� sin

p
��p − 1�2 + 4p�2p� . �73�

From �73�, it is found that F2p becomes maximum when
�2p=�*�d�= �4p2d2− �p−1�2� /4p �d=1,2 , . . . �. The maxi-
mum value F2p��*� is a constant given as

F2p��*� =
2

sin2�/2p�
− 1. �74�

Substituting �74� into �23�, we obtain the upper bound of �:

�* = T−1 ln cos�/2p� + 1

sin�/2p� �2

. �75�

Note that, in some cases, the maximum � is less than the
upper bound �*, since �* can be outside the region of un-
stable perturbations, s2p�i� defined by �24�. Some examples
of the range of �2p are shown in the following subsections.

The normalized growth rate �̄ is defined as

�̄�k,�� = lim
h→�

��k,�,h�
max� ��k,�,h�

= D−1	F2p„�2p�k,��… + ��F2p„�2p�k,��…�2 − 1	 ,
�76�

where D=�(F2p��*�) is the upper bound of �.
In the following subsections, we investigate the modula-

tional instability of the ZBM and two BEMs in detail. Note
that �2p�k ,�� and �̄�k ,�� satisfy the relation �2p�k ,��
=�2p�k ,N−�� for the acoustic perturbations �0���N /2�
and the relation �2p�k ,��=�2p�k ,3N−�� for the optical per-
turbations �N���3N /2�. We obtain the results in the cases
0���N /2 and N���3N /2 in the following subsections.

A. ZBM (k=N)

From �50�, �56�, and �67�, �2p of the ZBM is given as

MODULATIONAL INSTABILITY OF ZONE BOUNDARY… PHYSICAL REVIEW E 79, 026603 �2009�

026603-5



�2p�N,�� =
2p − 1

2

m

1 + m
�2��� . �77�

Substituting �42�–�44� into �77�, we obtain the range of �2p
as

0 � �2p�N,�� �
m

1 + m
�2p − 1� for 0 � � � N − 1,

�78�

1

1 + m
�2p − 1� � �2p�N,�� � 2p − 1 for N � � � 2N − 1.

�79�

We can discuss the stability of perturbations on the basis
of � by checking whether �2p�N ,�� lies in the region S2p
defined by �24� or not, since perturbations become unstable
when �2p�k ,���S2p. Figure 2 shows �2p�N ,�� versus m;
this figure also shows the regions s2p�i�.

The two red �dashed� lines in Fig. 2 indicate the minimum
and maximum values of �2p�N ,�� �0���N� for the acous-
tic perturbations. The two blue �solid� lines indicate the mini-
mum and maximum values of �2p�N ,�� �N���2N� for the
optical perturbations. Therefore, �2p�N ,�� can take any
value within the regions between the two red �dashed� lines
or the two blue �solid� lines for a fixed m. The vertical lines
�red and blue� between two red �dashed� lines and two blue
�solid� lines in Fig. 2 indicate the examples of the ranges of
�2p�N ,�� for two cases of m. The stability of perturbations
can be analyzed by determining whether the bands of
�2p�N ,�� are completely within the regions s2p�i�, which are
indicated by the gray band in Fig. 2. For example, in case �i�,
the band of the optical perturbations �blue line� is completely
within the region s4�1�. The band of the acoustic perturba-
tions �red line� is completely outside the gray band. In case
�ii�, the band of the optical perturbations is within the region

s4�1�. The band of the acoustic perturbations is partially cov-
ered by s4�1�. From these results, we find that the ZBM �k
=N� is unstable in both cases �i� and �ii�.

Next, we obtain the results of the stability analysis of the
ZBM. By comparing �78� and �79� with �27� and �28�, we
have found that the upper bound of the band of the acoustic
perturbations can be greater than a1=1. Therefore, the band
of �2p�N ,�� crosses the boundary between the stable region
s̄2p�1� and the unstable region s2p�1� once. On the other
hand, the band of the optical perturbations remains within
one unstable region s2p�1�. As a result, the range of � of the
unstable perturbations in the ZBM can be classified into the
following two cases:

�i� N � � �
3N

2
�optical� for 0 � m �

1

2�p − 1�
,

�ii� �c1�a1� � � �
N

2
�acoustic� , �80�

N � � �
3N

2
�optical� for

1

2�p − 1�
� m � 1,

where �c1��� is the critical wave number which is obtained
by solving the equation �2p�N ,�c1�=�,

�c1��� =
N


sin−1� m + 1

2p − 1

1

m1/2 ��2p − 1�� − �2�1/2� .

�81�

The bands labeled �i� and �ii� in Fig. 2 are examples of cases
�i� and �ii� given in �80�, respectively.

In Fig. 2, the line �=a1 and the upper bound �2p�N ,�� for
the acoustic perturbations �red line� intersect at m=1 /2�p
−1�. Recall that ai and bi are defined as

ai = i�i − 1�p + i , �82�

bi = i�i + 1�p − i . �83�

Figure 3 shows �̄ for the cases 0�m�1 /2�p−1� and
1 /2�p−1��m�1; the acoustic perturbations can be stable
or unstable depending on these conditions. The wave number
�max that gives the maximum �̄ is classified as the following
two cases:

�max = �3N/2 for 0 � m �
1 − P

P
,

�1
* for

1 − P

P
� m � 1,� �84�

where �
1
* is obtained by solving the equation �2p�N ,�

1
*�

=�*�1� for �
1
*,

�1
* =

N


sin−1P�1 − P�

�1 + m�2

m
�1/2

, �85�

and P is a function of p,
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optical band

s4(1)

(i) (ii)

a1

b1

λ*(1)

FIG. 2. �Color online� Range of the band of �2p�N ,�� versus m
for p=2. The red �dashed� lines indicate the maximum and mini-
mum values of �2p�N ,�� for the acoustic perturbations. The blue
�solid� lines indicate those for the optical perturbations. The gray
band shows the unstable regions s2p�i� bounded by aj and bj. The
horizontal dashed line in s2p�i� indicates �*�i�, which corresponds
to the upper bound of the growth rate �* defined in �75�.

DOI, NAKATANI, AND YOSHIMURA PHYSICAL REVIEW E 79, 026603 �2009�

026603-6



P�p� =
�p + 1��3p − 1�

4p�2p − 1�
. �86�

In Fig. 2, the line �=�
1
*�1� �horizontal dashed line� and the

lower bound of band of �2p�N ,�� for the optical perturba-
tions �blue solid line� intersect at 1−P

P .
In summary, it is found that the ZBM is always unstable

to arbitrary perturbations such as random noise.

B. BEM in optical band (k=3N Õ2)

From �49�, �55�, and �67�, �2p is given by

�2p�3N/2,�� =
2p − 1

2
m�2��� . �87�

Substituting �42�–�44� into �87�, we obtain the range of
�2p�3N /2,�� as follows:

0 � �2p�3N/2,�� � �2p − 1�m for 0 � � � N − 1,

�88�

2p − 1 � �2p�3N/2,�� � �2p − 1��1 + m�

for N � � � 2N − 1. �89�

Figure 4 shows �2p�3N /2,�� versus m in the regions of
unstable perturbations, s2p�i�. It is found that �I� the upper
bound of the acoustic band �2p−1�m is smaller than b1
=2p−1 for all m and �II� the lower bound of the optical band
2p−1 is equal to b1=2p−1. Further, the upper bounds of the
bands of both acoustic and optical perturbations cross the
boundary between the stable region s̄2p�i� and the unstable
region s2p�i� once. The range of � of the unstable perturba-
tions can be classified as following three cases:

�i� none for 0 � m � �2p − 1�−1,

�ii� �c2�a1� � � �
N

2
for �2p − 1�−1 � m � 3�2p − 1�−1,

�iii� �c2�a1� � � �
N

2
, N � � � �c2�a2� + N

for 3�2p − 1�−1 � m � 1, �90�

where �c2��� is the critical wave number obtained by solving
the equation �2p�3N /2,�c2�=�,

�c2��� =
N


sin−1� m1/2

2p − 1
���2p − 1��1 + m� − �2�1/2� .

�91�

The bands labeled as �i�, �ii�, and �iii� in Fig. 4 represent the
examples of cases �i�, �ii�, and �iii� given in �90�, respec-
tively. The upper bound of �2p�3N /2,�� of the acoustic per-
turbations �red dashed line� and the line �=a1 intersect at
m= �2p−1�−1. The upper bound of �2p�3N /2,�� of the opti-
cal perturbations �blue solid line� and the line �=a2 intersect
at m=3�2p−1�−1.

Note that the parameter 3�2p−1�−1 in �90� becomes equal
to 1 in the case of the FPU-
 system �p=2�. Therefore, the
optical perturbations in the BEM in the optical band are al-
ways stable in the FPU-
 system.

Figure 5 shows �̄ in cases �ii� and �iii� of �90�. The wave
number �max which gives the maximum growth rate for a
fixed m is given as follows:

�max = �none �always stable� for 0 � m � �2p − 1�−1,

N/2 for �2p − 1�−1 � m � P ,

�2
* for P � m � 1,

�
�92�

where �
2
* is the wave number obtained by solving the equa-

tion �2p�3N /2,�
2
*�=�*�1�,

�2
* =

N


sin−1P

1 + m

m
− P2 1

m
�1/2

. �93�

The upper bound of the acoustic perturbations �red dashed
line� and the line �=�*�1� �horizontal dashed line� intersect
at m= P.
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(i) m = 0.40
(ii) m = 0.70

FIG. 3. The normalized growth rate �̄ of the perturbations in
ZBM �k=N� for various values of m. The parameter m of cases �i�
and �ii� corresponds to the parameter labeled in Fig. 2.
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FIG. 4. �Color online� �2p�3N /2,�� versus m for p=3. The
definition of red �dashed� lines, blue �solid� lines, and gray bands is
the same as that of Fig. 2.
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In summary, it is found that the BEM �k=3N /2� is stable
in the case of small m and is unstable otherwise.

C. BEM in acoustic band (k=N Õ2)

From �48�, �54�, and �67�, �2p is given by

�2p�N/2,�� =
2p − 1

2
�2��� . �94�

Figures 6 and 7 show �2p�N /2,�� versus m for p=2 and
p=5, respectively. In both figures, it is found that the band of
�2p�N /2,�� of the acoustic perturbations is in the regions
s�1� and s̄�1�. The range of � of the unstable perturbations is
given by

�c3 � � � N/2. �95�

The critical wave number �c3 is obtained by solving the
equation �2p�N /2,�c3�=a1�=1�,

�c3 =
N


sin−1 1 + m

2p − 1
−

m

�2p − 1�2�1/2

. �96�

In the case of optical perturbations, the range of
�2p�N /2,�� depends on m. Therefore, the regions s2p�i� and
s̄2p�i�, which are covered by the band of �2p�N /2,��, depend
on m. Moreover, due to variation in the width of �2p�N /2,��
and the widths of the regions s2p�i� and s̄2p�i�, the number of
regions s2p�i� and s̄2p�i� covered by the band of �2p can vary.
Therefore, the stability of perturbations can be determined by
comparing the widths of s2p�i� and s̄2p�i� with the width of
the band of �2p�N /2,��. In summary, it is found that the
range of � of the unstable perturbations is very complex and
is given as follows.

Consider the cases p�4, which are shown in Fig. 6.
For 0�m�

2p−1
2�p+1� ,

�i�� N � � � �c4�ai+1� + N

for
2p − 1

ai+1
� m �

2p − 1

ai+1 − �2p − 1�
,

�ii�� none for
2p − 1

ai+1 − �2p − 1�
� m �

2p − 1

bi
,

�iii�� �c4�bi� + N � � � 3N/2

for
2p − 1

bi
� m �

2p − 1

bi − �2p − 1�
,

�iv�� N � � � 3N/2 for
2p − 1

bi − �2p − 1�
� m �

2p − 1

ai

�i = 2,3, . . . � . �97�

For
2p−1

2�p+1�
�m�1,

N � � � �c4�a2� + N . �98�

The bands labeled �i��– �iv�� in Fig. 6 indicate examples in
the range of �2p�N /2,�� for the respective cases described in
�97�.
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0 N/2,3N/2 N
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(ii) m = 0.40
(iii) m = 0.90

FIG. 5. The normalized growth rate �̄ of the perturbations in
BEM in optical band �k=3N /2� for various values of m. The pa-
rameter m of cases �ii� and �iii� corresponds to the parameter la-
beled in Fig. 4.
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FIG. 6. �Color online� �2p�N /2,�� versus m for p=2. The re-
gions s2p�i� are also indicated. The definition of red �dashed� lines,
blue �solid� lines, and gray bands is the same as that of Fig. 2. �a�
and �b� show the variation in the band of �2p�N /2,�� for the com-
plete range of m and for 0.03�m�0.08, respectively. In both
cases, the bands of ��N /2,�� of the optical perturbations can be
completely inside a single stable region s̄2p�j� �see the bands la-
beled �ii��.
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Consider the case p�4, which is shown in Fig. 7.
For 0�m�m1,

�i�� N � � � �c4�ai+1� + N

for
2p − 1

ai+1
� m �

2p − 1

ai+1 − �2p − 1�
,

�ii�� none for
2p − 1

ai+1 − �2p − 1�
� m �

2p − 1

bi
,

�iii�� �c4�bi� + N � � � 3N/2

for
2p − 1

bi
� m �

2p − 1

bi − �2p − 1�
,

�iv�� N � � � 3N/2 for
2p − 1

bi − �2p − 1�
� m �

2p − 1

ai

�i = p − 1,p, . . . � . �99�

For m1�m�
2p−1

2�p+1� ,

�i� N � � � �c4�ai+1� + N for
2p − 1

ai+1
� m �

2p − 1

bi
,

�ii� N � � � �c4�ai+1� + N,�c4�bi� + N � � � 3N/2

for
2p − 1

bi
� m �

2p − 1

ai+1 − �2p − 1�
,

�iii� �c4�bi� + N � � � 3N/2

for
2p − 1

bi+1 − �2p − 1�
� m �

2p − 1

bi − �2p − 1�
,

�iv� N � � � 3N/2 for
2p − 1

bi − �2p − 1�
� m �

2p − 1

ai

�i = 2,3, . . . ,p − 2� . �100�

For 2p−1
2�p+1� �m�1,

N � � � �c4�a2� + N . �101�

The bands labeled �i�–�iv� in Fig. 7�a� and �i��– �iv�� in Fig.
7�b� indicate the examples of the range of �2p�N /2,�� for
the respective cases described in �99� and �100�.

The critical wave number �c4��� is obtained by solving
the equation �2p�N /2,�c4�=�,

�c4��� =
N


sin−1� 1

2p − 1
���1 + m��2p − 1� − m�2�1/2� .

�102�

For p�4, there exists a critical mass m1 given by

m1 =
2p − 1

�p − 1�3 . �103�

The main difference between the cases 0�m�m1 and m1
�m�1 for p�4 is the width of the band of �2p�N /2,�� of
the optical perturbations and the width of the regions s2p�i�.
This difference leads to a difference in the range of � of the
unstable perturbations—that is, �ii�� in �99� and �ii� in �100�.
Detailed discussions are given in Appendix B.

Figure 8 shows �̄ of the perturbations for four typical
values of m corresponding to �i�–�iv� in Fig. 7�a�.

Since the band of �2p�N /2,�� of the acoustic perturba-
tions covers the complete region of s�1� as shown in Fig. 7,
�̄ of the acoustic perturbations takes �*. The corresponding
�max is given by

�max =
N


sin−1�P�1 + m� − P2m�1/2. �104�

In the case of the optical perturbations, on the other hand,
�̄ and �max show a complex change depending on m, shown
in the right half of Fig. 8. For some values of m, ���� can
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FIG. 7. �Color online� �2p�N /2,�� versus m for p=5. The re-
gions s2p�i� are also indicated. The definition of red �dashed� lines,
blue �solid� lines, and gray bands is the same as that of Fig. 2. Each
figure shows the variation in the band of �2p�N /2,�� for �a� m1

�m�1 and �b� 0�m�1, respectively. In case �a�, the band of
�2p�N /2,�� of the optical perturbations can lie in two unstable
regions �see the band labeled �ii��, while in case �b�, �2p�N /2,�� of
the optical perturbations lies completely inside a single stable re-
gion s̄2p�j� �see the band labeled�*�ii���.
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take the value of �*. In other cases, ���� is smaller than �*

for all � of the optical perturbations, since �* lies outside the
optical band of �2p�N /2,��.

In summary, the BEM �k=N /2� is always unstable against
arbitrary perturbations such as random noise.

D. Numerical simulations

In order to determine relation between the modulational
instability and emergence of CBs in the diatomic lattice sys-
tem, we carried out numerical simulations of the modula-
tional instability in the FPU-
 system. This system is re-
garded as a particular system of �30�—i.e., obtained by
setting the parameter p=2 in �30�. The stability analysis of
this system is given in Appendix C. The Hamiltonian of the
FPU-
 system is

H =
1

2�
j=1

2N

mjq̇j
2 + �

i=1

2N K2

2
�qj+1 − qj�2 +

K4

4
�qj+1 − qj�4� .

�105�

The parameters are K2=0.5, K4=4, and N=256. Initial dis-
placement is given by the ZBM and two BEMs with small
perturbation. The total energy of the system is same for all
cases.

The results of the numerical simulation are shown in Figs.
9–11, which are examples of the cases classified in
�C1�–�C3� in Appendix C, respectively. In Appendix C, it is
stated that the ZBM and BEMs are unstable for all cases,
except for the case of the BEM in the optical band in a
system with 0�m�1 /3.

In the numerical results, all figures except Fig. 10�a� show
the same behavior qualitatively. Initially, energy is uniformly
distributed in the system. The ZBM or BEMs are modulated
to form an array of breathers. Then, the breathers start mov-
ing and colliding with each other. The motion of the breath-
ers is erratic. It is found that modulational instability leads to

the excitation of CBs. In the case of Fig. 10�a�, these pro-
cesses do not occur. Hence, the BEM in this case is found to
be stable.

V. CONCLUSIONS

In this study, we analyzed the modulational instability of
the BEMs and ZBM in a one-dimensional nonlinear diatomic
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(i) m = 0.30
(ii) m = 0.35
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(iv) m = 0.50

FIG. 8. The normalized growth rate �̄ of the perturbations in
BEM in acoustic band �k=N /2� for various values m. The param-
eter m of the cases �i�–�iv� corresponds to the parameter labeled in
Fig. 7.

FIG. 9. �Color online� Temporal evolution of particle energy in
BEM in acoustic band �k=N /2� in FPU-
 lattice. Parameters are
m=0.2, K2=0.1, and K4=4.

(b)

(a)

(c)

FIG. 10. �Color online� Temporal evolution of particle energy of
BEM in optical band �k=3N /2�. The parameter m is given as �a�
m=0.2, �b� m=0.5, and �c� m=0.8. The other parameters K2, K4,
and E are the same as those used in Fig. 9.
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lattice and obtained rigorous results. We obtained the growth
rate � of the perturbations and the wave number �max that
gives the maximum growth rate. It was found that stability
depends on the mass ratio of heavy and light particles. The
critical mass mi at which the property of the modulational
stability changed drastically was also obtained.
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APPENDIX A: DERIVATION OF THE GAUSS
HYPERGEOMETRIC EQUATION

Consider the variable transformation

z = � �2p

2ph
����t��2p. �A1�

Equations �3� and �6� can be rewritten as

d2�

dt2 = − 2ph���t��−1z , �A2�

�d�

dt
�2

= 2h�1 − z� . �A3�

Differentiating �A1� in terms of z and substituting �A2�
and �A3�, we obtain

dz

dt
= ��2p

h
����t��2p−1�d�

dt
� = 2pz���t��−1�2h�1 − z��1/2,

�A4�

d2z

dt2 = ��2p

h
���2p − 1����t��2p−2�d�

dt
�2

+ ���t��2p−1�d2�

dt2 ��
= 4phz���t��−2��2p − 1� − �3p − 1�z� . �A5�

Substituting �A4� and �A5� into

d2	

dt2 =
d2	

dz2�dz

dt
�2

+
d	

dz

d2z

dt2 , �A6�

we obtain

d2	

dt2 = 4phz���t��−2�2pz�1 − z�
d2	

dt2

+ ��2p − 1� − �3p − 1�z�
d	

dt
� . �A7�

Substituting �A1� and �A7� into �4� and after some calcu-
lations, we obtain the Gauss hypergeometric equation as

z�1 − z�
d2	

dt2 + �1 −
1

2p
� − �3

2
−

1

2p
�z�d	

dt
+

�2p

4p
	 = 0.

�A8�

APPENDIX B: DETAILED STABILITY ANALYSIS OF THE
BEM IN THE ACOUSTIC BAND

Substituting �42�–�44� into �94�, we obtain the range of
�2p as

0 � �2p�N/2,�� � 2p − 1 for 0 � � � N − 1, �B1�

�2p − 1�/m � �2p�N/2,�� � �2p − 1��1 + 1/m�

for N � � � 2N − 1. �B2�

In the case of the optical band of �2p�N /2,��, we can
discuss the stability by considering the width of the band of
��2p� and the width of the regions �s�i�� and �s̄�i��. The
widths of these regions are given by

�s�i�� = 2i�p − 1� , �B3�

�s̄�i�� = 2i + 1, �B4�

��2p� = 2p − 1. �B5�

By comparing �s�i��, �s̄�i��, and ��2p�, it is found that

��2p� � �s�i�� for i � 1, �B6�

��2p� � �s̄�i�� for i � p − 1, �B7�

��2p� � �s̄�i�� for i � p − 1. �B8�

These results indicate that for a fixed m, two stable regions
s̄�l� and s̄�l+1� are never covered by the band of �2p for the
optical perturbations at the same time. The two unstable re-
gions s�l� and s�l+1�, on the other hand, can be covered by
the band of �2p�N /2,�� in the case of i� p−1. Since the
optical band �2p�N /2,�� can cover the regions s̄i for i�1,

(b)

(a)

FIG. 11. �Color online� Temporal evolution of particle energy in
ZBM �k=N�. The parameter m is given as �a� m=0.3 and �b� m
=0.8. The other parameters K2, K4, and E are the same as those
used in Fig. 9.
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the condition i� p−1 is satisfied only if r�3.
By solving the equation �2p−1� /m=ap−1, we obtain m1,

which determines whether the band of �2p can cover the
unstable regions s�l� and s�l+1� or not:

m1 = �1 for p � 3,

2p − 1

�p − 1�3 for p � 3. � �B9�

As a result, the relation between the stable �unstable� regions
and the perturbation band is classified as follows:

�2p � �
�i�� s̄i � si+1,

�ii�� s̄i,

�iii�� si � s̄i,

�iv�� si,
� �B10�

for m�m1,

�2p � �
�i� s̄i � si+1,

�ii� si � s̄i � si+1,

�iii� si � s̄i,

�iv� si,
� �B11�

for m�m1.
Thus, we can calculate the range of � of the unstable

perturbations, as in Sec. IV C.

APPENDIX C: STABILITY ANALYSIS IN THE FPU-�
SYSTEM

In this section, we describe �max, which gives the maxi-
mum � in the case of a FPU-
-type interaction �p=2�. It

should be noted that the parameter is exactly true only in the
homogeneous case. However, even in the FPU-
 system,
which shows a harmonic interaction, we obtain the same
results in the high-energy region.

1. BEM in the acoustic band (k=N Õ2)

For any m, �max is given by

�max =
N


sin−15

8
+

15m

64
�1/2

. �C1�

2. BEM in optical band (k=3N Õ2)

�max can be classified into three cases as follows:

�max = �
none�stable� , 0 � m � 1/3,

N/2, 1/3 � m � 5/8,

N


sin−15

8
+

15

64m
�1/2

, 5/8 � m � 1. �
�C2�

3. ZBM (k=N)

�max can be classified into two cases as follows:

�max = �3N/2, 0 � m � 3/5,

N


sin−115�1 + m�2

64m
�1/2

+ N , 3/5 � m � 1. �
�C3�
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